
  

  

Abstract— This paper aims to discuss the state-of-the-art 

technique for autonomous peg-in-hole assembly tasks. The peg-

in-hole process includes two stages: hole search and insertion 

compensation. In the hole search stage, machine vision is 

introduced to detect the hole position and the contact force 

combined with the contact model to estimate the hole position. 

The analytical model, impedance control, and machine learning 

with insertion compensation are present in the insertion 

compensation. The pros and cons of the introduced method are 

further discussed in the discussion section. 

 
Index Terms—Autonomous robotic systems, Intelligent 

robotics, Robotics technology, System analysis and optimization, 

Machine learning in modeling, prediction, control and 

automation, Smart assembly, Smart manufacturing 

 

I. INTRODUCTION 

Due to the aging population issue in recent years in Taiwan, 

the government has started to fund research institutions, 

universities and companies to develop the autonomous 

assembly system and further uses for production. Therefore, 

machine learning algorithms and robotic systems have 

become popular research topics [1]. 

The peg-in-hole assembly is the most common assembly 

task for a robotic arm. The research also shows that the 

demand for the collaborative robot has been growing recently, 

as shown in Fig. 1. Furthermore, the peg-in-hole assembly 

using a collaborative robot to co-work with the human 

operator has become customary in a factory. Typically, the 

peg-in-hole task can be separated into two stages: searching 

for a hole and inserting the peg. In the searching hole stage, 

machine vision can accurately detect the relationship between 

the hole and peg by eye-in-hand and eye-to-hand camera. 

Without the machine vision system, the intuitive assembly 

strategy of the move following the spiral trajectory or some 

specifically designed trajectory can be applied. Then, the 

contact force/torque can be analyzed to estimate the hole 

location after the previously introduced methodology finds 

the hole, the center axis of the peg and the hole still hard to 

align. Therefore, the axial friction reduction and compliance 

insertion methods are applied to improve the assembly quality 

during the peg-in-hole process. 

In a more in-depth study, the F/T sensor is used to 
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determine the contact F/T between a robot’s end-effector and 

a hole and for analysis or compensation [2-4]. In terms of 

contact F/T compensation studies, Wang used a neural 

network model to predict the contact F/T and used this for 

compensation [5]. Xu and Hou used a fuzzy logic-driven 

compensator with deep learning skills to compensate the F/T 

during a peg-in-hole process [6, 7]. The computational power 

of computers has been growing faster recently, so deep 

learning neural networks and reinforcement learning policies 

are used for an F/T compensator for high-precision robotic 

assembly tasks [8-11]. Zhang used compliance control with 

fuzzy control and force feedback to improve the assembly 

strategy [12]. Zou used a wrist force sensor to measure the 

external force on the load and used an impedance controller 

with velocity control to minimize environmental contact [13]. 

To address non-alignment, Liu used axial friction with an 

analytical method to optimize the assembly [14]. 

Reinforcement learning (RL) is a novel technology used to 

generate the model based on rewarding desired behaviors 

and/or punishing undesired ones. The InsertionNet is 

proposed by Spector to solve the insertion problem using RL 

[15]. Wang used RL to shape exploration space due to the 

contact model of the object for insertion is uncertain [16].  

This paper discusses the autonomous hole search and active 

insertion compensation technique. The authors have 

published some research articles on this issue. Our team is 

working-in-process to improve the performance and quality 
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Fig. 1 Global Collaborative Robot Marketing Statistics and Forecast 
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of the high-precision peg-in-hole assembly task. 

II. HOLE SEARCH STRATEGIES 

The hole search strategies can be simply machine vision-

based and contact-based methods. The details will be 

introduced in the following sections. After the hole has been 

found, the peg-in-hole process will insert the peg into the hole 

via the insertion strategies. 

A. Machine vison-based hole search 

    The machine vision system can be used to estimate the 

2-dimension and 3-dimension position and orientation of the 

object in the image depending on the camera system. A flow 

of a peg-in-hole task with eye-in-hand machine vision 

correction is shown in Fig. 2. The robotic arm first moves to 

capture point 1 to capture and detect the peg location by image 

recognition algorithm. After the robot picks up the object, the 

robot system will command the robotic arm to capture point 

2 to detect the hole offset. Finally, the relationship between 

the peg and hole can be estimated by the aforementioned flow. 

B. Contact force-based hole search  

The contact force-based hole search method usually uses 

contact force between the robot end-effector and the contact 

plane to estimate the hole location. Furthermore, a specifically 

designed trajectory [17], such as a spiral trajectory [18], is 

used to generate contact force for the search algorithm, shown 

in Fig. 3. The following figures displace the designed trajectory, 

which is used to generate the contact force. 

III. INSERTION STRATEGIES 

In the peg-in-hole task, the robot system will first grasp the 

peg and detect the hole location by the previously detailed 

strategy. After that, the insertion is also an important issue 

during the assembly task. If the center axis of the hole and the 

peg are not aligned, the assembly task will not succeed during 

the insertion. As a result, improving the assembly success rate 

become a capstone in the task. The analytical method and 

machine learning-based algorithm are applied to optimize the 

result to find the correct angle and position for the robot end-

effector. 

A. Analytical method for insertion correction 

The correction of the insertion using the analytical method 

usually combine with the force/torque feedback. In this 

scenario, the robotic arm needs to maintain the contact 

situation, as shown in Fig. 4. Once the contact model is 

maintained, the contact force model can be derived [19]. 

One of the three-point contact models is shown in  

Fig. 5. Therefore, the tilt angle is able to be estimated by 

combining it with the force/torque feedback. 

B. Impedance control method for insertion correction 

Instead of using an analytical method to estimate the tilt 

angle of the peg, the insertion correction can combine with the 

impedance control. Park et al. designed a partial spiral force 
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Fig. 2 A flowchart for the machine vision-based peg-in-hole task 
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(c) (d) 

Fig. 3 The trajectories for hole search: (a)the spiral trajectory for xy 

axis, (b)the rotation angle about x-axis follows above trajectory, 

(c)specifically designed trajectory and (d)searching trajectory for 

contact force detection  

    
(a) (b) (c) (d) 

Fig. 4 Alignment condition between peg and hole before insertion: (a) 

line contact, (b)One-point contact, (c)Two-point contact and (d) Three-

point contact. 

 
Fig. 5 Geometric Analysis of three-point contact 



  

trajectory (PSFT) with an impedance control method [20], 

shown in Fig. 6. The end-effector moves following the 

trajectory and corrects the attitude using impedance control. 

The proposed method is more effective than the analytical 

method. 

C. Machine learning for insertion compensation 

Since the computation power of a computer is growing, the 

complex machine learning-based method with large 

computation consumption can be utilized in robotics. The 

authors applied the LSTM to model the contact pattern during 

insertion to estimate the compensation force and torque, as 

shown in Fig. 7 [21]. A convolutional neural network (CNN) 

was implemented in the compensation flow to estimate the 

correction by Zhang [12], as shown in Fig. 8. The 

reinforcement learning for insertion was implemented by Luo, 

as shown in Fig. 9 [22]. The results show that machine 

learning can improve the assembly quality for peg-in-hole 

tasks. Furthermore, RL is widely used to improve assembly 

quality. Dong used RL to generate the object geometry with 

contact force [23]. Shi considered incorporating operational 

space visual and haptic into RL to solve the target uncertainty 

problem [24]. Xu combined the manipulation primitives, 

behavior tree and RL with speeding up the convergence of the 

RL model [25].   

IV. DISCUSSION 

A. Hole Search 

Machine vision and contact force search are the common 

search strategies applied for hole search. The machine vision-

based search algorithm is much more accurate than the 

contact force search and not necessary to derive the 

mathematical model. Furthermore, the contact force-based 

search constrains the relationship between peg and hole in the 

designed searching trajectory. On the other hand, the machine 

vision system increased the cost of the vision system and 

applied the image processing technique with the peg-in-hole 

process. 

B. Active Insertion Strategies 

The analytical model, impedance control and machine 

learning with insertion compensation were introduced. The 

analytical model has to maintain the contact model and then 

uses the contact force/torque and the following model to 

estimate the compensation position and orientation. The 

impedance control uses the compliance model to insert the 

peg and correct the angle during insertion, which is more 

effective than the analytical model. However, the compliance 

control will decrease accuracy and fail due to the initial bias 

for the peg over the compensation limit. Finally, the machine 

learning model is applied to estimate in addition forecast the 

correction during insertion. Nevertheless, the machine 

learning model consumes more computation to calculate the 

compensation value. 

V. WORKING-IN-PROCESS CASE 

The authors have published some research articles to 

discuss the peg-in-hole issue using the cylinder peg [21]. The 

industrial technology research institute (ITRI) aims to support 

the industry’s development. Therefore, our team is working-

in-process to enhance the performance and quality of the peg-

in-hole process using deep learning techniques. Furthermore, 

our team is working toward improving the insertion quality 

with different shapes of the object, such as: Universal Serial 

Bus(USB) port, Ethernet port, square shape and irregular 

shape. 

 
Fig. 6 Assembly force and force generated by PSFT: (a) two-point 

contact and (b) three-point contact. 
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Fig. 7 The LSTM for estimating the compensation force/torque. 
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Fig. 8 The compensation flow for insertion combines with the CNN. 
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Fig. 9 The compensation network for insertion combines with the 

reinforcement learning. 



  

VI. CONCLUSION 

In recent years, the pandemic has caused a labor shortage. 

Therefore, smart manufacturing using robotic systems has 

become a popular topic. This paper discusses the autonomous 

hole search and insertion compensation for peg-in-hole 

assembly tasks using a robotic arm. The peg-in-hole process 

includes two main stages: hole search and insertion 

compensation. The state-of-the-art algorithms are introduced, 

and the pros and cons are compared in the discussion. As a 

non-profit organization, the ITRI is currently researching 

critical technologies for smart manufacturing and artificial 

intelligence for manufacturing. Our goal is to support the 

development of the industry. We are presently working-in-

process to develop an intelligent assembly system using a 

robotic arm. 
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